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ABSTRACT 
 
Anthropogenic forest fragmentation increases the amount of edge habitat.  Although 
edges are harsh environments for many native species, ratsnakes often prefer this habitat.  
We examined thermoregulatory effectiveness of Central Ratsnakes (Elaphe spiloides) 
using forest edges preferentially to determine if edge preference is driven by increased 
thermoregulatory efficiencies.  Six male subjects were located every 1-2 days using 
radio-telemetry and temperature sensitive transmitters.  Subjects did not thermoregulate 
more efficiently in edges than in forest.  Snakes were thermoconformers in both habitat 
types suggesting edge preference might be driven by other factors. 
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INTRODUCTION 
 
Forest fragmentation resulting from agricultural practices is prevalent in the midwestern 
US, particularly Illinois (70% cropland; Bretthauer and Edgington 2003).  In addition to a 
loss of forest, this practice is responsible for creating large amounts of edge habitat.  
Edges are subjected to more extreme abiotic influences (i.e., wind and temperature pat-
terns, see Saunders et al. 1991), increased predation and/or competition among species 
(Bolger et al. 1991, Donovan et al. 1995, McCollin 1998), and proliferation of exotic 
species (Yahner 1988, Murcia 1995) making this habitat type harsh to many organisms.  
However, ratsnakes (Elaphe spp.) preferentially use edge habitat (Weatherhead and 
Charland 1985, Durner and Gates 1993, Blouin-Demers and Weatherhead 2002). 
 
Edge preference of Elaphe might reflect an increased number of avian (Gates and Gysel 
1978, Paton 1994) and small mammalian prey (Weatherhead and Charland 1985, Blouin-
Demers and Weatherhead 2001a).  Alternatively, because edges experience warmer tem-
peratures (Flaspohler et al. 2001, Kolbe and Janzen 2002) due to increased sun exposure 
(Weatherhead and Charland 1985), edge preference might be due to increased ability to 
thermoregulate in this habitat.  Thermoregulation facilitates quicker digestion of meals, 
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decreases gestation time of gravid females, and is critical during ecdysis.  Therefore, 
thermoregulation might be the most important factor in determining squamate habitat use 
patterns (Grant 1990, Peterson et al. 1993, Reinert 1993).  Ratsnakes in the northeastern 
US (E. spiloides, following Burbrink 2001) thermoregulate more efficiently in edges 
(Blouin-Demers and Weatherhead 2001a), but little is known about the thermoregulatory 
abilities of Elaphe in other geographic regions.  We examine the thermoregulatory abili-
ties of Central Ratsnakes (Elaphe spiloides) preferentially using edge habitat in Clark 
County, Illinois (see Foster et al. 2006), and test the hypothesis that this preference is due 
to increased thermoregulatory abilities in this habitat. 
 

MATERIALS AND METHODS 
 
This study was undertaken between 20 May 2003 and 7 November 2004 on ca. 280 ha of 
privately-owned land located 14 km southeast of Martinsville, Clark County, Illinois.  
Agriculture row-crops (soybeans [Glycine max] and corn [Zea mays]) surround and 
fragment a mixed mesic hardwood forest in a ridge-valley landscape, creating a large 
amount of edge habitat.  Numerous creeks flow into a man-made lake of ca. 30 ha, which 
has further fragmented the forest habitat.  A county road and power line bisecting the site 
provide additional edge habitat. 
 
Radio transmitters with thermistors (calibrated prior to implantation; model SI-2T, Holo-
hil Systems, Ltd., Ontario, Canada) were surgically implanted into collected ratsnakes 
(see Reinert 1992, Hardy and Greene 1999, 2000).  Subject body temperature (± 0.1 °C) 
was calculated without disturbance to the snake based on the rate of emitted pulses.  
These values were compared to ambient temperatures recorded at the time of subject 
location.  All subjects were located daily or on alternate days using a Telonics TR-4 
receiver (Wildlife Materials, Inc., Carbondale, Illinois). 
 
Because ratsnakes exhibited preference for edges over forest (Foster et al. 2006), ther-
moregulation data were analyzed in these habitats.  The preferred body temperature range 
(Tset) was assumed 26.5-29.8 °C (following Blouin-Demers and Weatherhead 2001b).  
Following Blouin-Demers and Weatherhead (2002):  da – db = effectiveness of ther-
moregulation, where da is the deviation of ambient temperature from Tset, and db is the 
deviation of snake body temperature from Tset.  We used this equation to compare ther-
moregulatory abilities between forest and forest edges (following Blouin-Demers and 
Weatherhead 2001c, defined as ± 15 m of the boundary between forest and any open 
habitat).  Negative values of da – db arise when snakes use thermally favorable habitats 
less than their availability, zero represents thermoconformity, and positive values indicate 
snakes that are thermoregulating efficiently.  Values of da and db were not calculated for 
subjects in hibernation (between 5 November 2003 and 6 April 2004).  Univariate analy-
ses of variance (ANOVAs) were used to analyze thermoregulation data; non-independ-
ence of data was corrected by treating each snake as a block.  All statistical analyses were 
calculated using SPSS (SPSS Inc., 2003). 
 

RESULTS 
 
Six male ratsnakes (mean snout-vent length ± 1 standard error = 119.8 ± 11.3 cm) were 
located 186 times in forest and 119 times in edges.  Mean (± 1 SE) ambient temperature 
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and snake body temperature during locations was 23.6 ± 0.3 °C and 23.2 ± 0.3 °C, 
respectively.  Ambient temperatures ranged from 5.2 to 36.3 °C and body temperature 
ranged from 9.5 to 35.7 °C.  Ambient temperature exceeded body temperature 59.2% of 
all location events.  Snake body temperatures were correlated with ambient temperatures 
for each individual (r2 ≥ 0.37, p < 0.001) and for data pooled among individuals (r2 = 
0.73, p < 0.001; Fig. 1). 
 
Ambient temperatures and body temperatures did not differ between forest and edges 
(F1,302 = 1.14, p = 0.29 and F1,302 = 0.46, p = 0.50, respectively; Table 1).  Snake body 
temperatures were within the preferred temperature range 18.8% of locations in forest 
habitat and 10.2% in edges, whereas ambient temperatures fell within this range 22% of 
the time in forest and 11.9% of the time in edges.  Thermoregulatory effectiveness did 
not differ among subjects while occupying edge or forest habitat (F5,4.462 = 3.47, p = 0.11) 
or between edges and forest (F1,4.611 = 0.40, p = 0.56; Table 1). 
 

DISCUSSION 
 
Ambient temperatures at our study site were not higher in edges than forest, contrary to 
other studies (e.g., Flaspohler et al. 2001, Kolbe and Janzen 2002).  Male ratsnake ther-
moregulatory effectiveness did not differ between these two habitats, indicating that edge 
preference (see Foster et al. 2006) might be due to other factors, possibly an increased 
number of prey (Gates and Gysel 1978, Weatherhead and Charland 1985, Blouin-Demers 
and Weatherhead 2001c). 
 
Although we expected to find snakes maintaining body temperatures in the preferred 
thermal range (assumed 26.5-29.8 °C, following Blouin-Demers and Weatherhead 
2001a), this was rarely the case.  Several factors suggest that subjects were not attempting 
to achieve body temperatures in this range.  Ambient temperatures were in this range 
more frequently than snake body temperatures in both habitats.  Additionally, snake body 
temperatures varied greatly and were dependent upon ambient temperatures (Fig. 1).  
Calculated values for thermoregulatory effectiveness were close to zero in both forests 
and edges.  Both are indicative of thermoconformity rather than active thermoregulation. 
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Table 1. Mean (± 1 SE) ambient temperature (°C), snake body temperature (°C), and 
thermoregulatory effectiveness (da – db) of six male Central Ratsnakes (Elaphe 
spiloides) radiotracked in forest and edge habitat in Clark County, Illinois 
between 20 May 2003 and 7 November 2004. 

 
  

Habitat Type Ambient 
Temperature (°C) 

Subject Body 
Temperature (°C) 

Thermoregulatory 
Effectiveness 

Forest 23.3 ± 0.5 22.8 ± 0.4 0.03 ± 0.23 
Edges 22.6 ± 0.4 22.4 ± 0.5 -0.31 ± 0.20 
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